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Global Plastics Production
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® the “big six” polymers are polyethylene (HDPE, LDPE), polypropylene (PP), polyvinylchloride (PVC),

polystyrene (PS), poly(ethylene terephthalate) (PET), polyurethanes (PUR)
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Polyethylene
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Low-Density Polyethylene (LDPE) by Radical Polymerization of Ethylene

® free-radical polymerization possible at high temperature and high pressure in the gas phase

300°C
1000 bar
L cmch O, /H,0, > /{/\/]/ low-density polyethylene (LDPE)
,C=CH, ] Tg =—100°C; Trm = 105-115°C

® no electronic stabilization of the radical, requires drastic conditions and promotes side reactions

® high degree of long-chain branching due to chain transfer (2—-4% Me, 0.5% longer branches)

N -
o
active chain end transfer to polymer chain polymer branching

® long chain branching results in low degree of crystallinity, hence low density and low stiffness
® increased entanglement for high melt strength, and (together with low crystallinity) high ductility
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High-Density Polyethylene (HDPE) by Ziegler-Natta Polymerization

surface H H coordination migratory insertion
RO W OH / NcH, H Cu CH,
'.CI";Ti\‘CJ‘ — C /Tl\—CI = 'CI /Tl\—CI =
-Cl Ck- ---Cl Ck-- ---Cl Cl--
QH3 CH3 CH3
CH, _CH, CH2 /o CH2 ¥
Q LH, H,C \tCHz HZC)KCHZ
,Cl""Ti‘CJ > Cles T|‘C| > Cl Tl—CI
1 / % o / \ % P / \ A
---Cl CI-- ---Cl CI-- ---Cl CI--
transfer

n >—< /\/[/\/]/\\ 0 B-hydrogen elimination Q H
T|—-C| > H3C/\/[/\/]/\ + 'Cl T —Cl
n ,' \

---CI CI-- --Cl CI--

® Cossee Arlman mechanism: monomer coordination to empty coordination site on surface metal atom
® migratory insertion into Mt—C bond, means that polymer switches coordination site at every step
® chain transfer generates terminal double bonds (can result in few branches when polymerized)
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Commercial Polyethylene (PE) Grades
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® higher melting temperature, crystallinity, strength and stiffness for HDPE than for LDPE
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Commercial Polyethylene (PE)

high-density polyethylene (HDPE)

A structurally “regular” with few branching points ,‘
(7/1000 carbons) LZA

packs efficiently, high crystallinity, high density

low-density polyethylene (LDPE) ,\
H highly branched with many branching points (60/1000 4
~ ¢ carbons) L 4)

low crystallinity, low density, film forming

Material Tm (°C) T: (°C) crystallinity density (g/mL) tensile strength
(MPa)
HDPE 120-135 -100 70-90% 0.94-0.97 20-37
LDPE 105-115 -100 40-60% 0.92 8-15

e HDPE and LDPE display vastly different physical properties; separable based on their densities!
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LDPE Applications

~
N
N\

-
N




Appllcatlons of HDPE

i QUILALLLLL

commercial & industrial packaging

------ ’\\\@ \\\\\\\\‘

agriculture & aquaculture automotive parts

367






Polypropylene



Heterogeneous Catalysts for Ziegler-Natta Polymerization

activation by Ti centers with empty d orbitals
crystal surface alkylating agent
Cl Cl Cl WY Me
N2 AN AN MED LMD R
Cho QTR T Clri=| - Lhyfimq] Chiri=C
cl CpTi—=Cl  ClTi—=Cl Cl AlMe Cl \Cl""Ti:‘Cl \C| Ti—=C| ]
/ 7 \ 3 /\ / \
CI\ Cl CI\ Ll - CI\ Cl CI\ Cl
Cl  ClwwTj==C|] ClwTi==C| CI “AICl, o e S0l CleeTi=C]  Cl
\ & 7/ \ 7\ \ ¢ | 3 Cl\ ::*CI 7/ '\ \ & \ \
CI";T'\‘C' C""/T"C' C'"}T'\‘C ClTi==Cl CI--;Ti—CI C|--;T|\—CI
Cl (I Cl (I Cl Cl CI/ Cl Cl \CI Ccl I
bulk crystal bulk crystal
e (B-TiCls with sheets of edge-connected TiCls octahedra with due to TiCls stoichiometry

e 110 crystal surface exposes sheet edges, Ti centers with free coordination site (empty d orbital)
near surface Ti centers creates to coordinate to empty d orbital

e catalyst activation by alkylation, generates large number of unsaturated & alkylated Ti centers
® “multisite” catalysts with various types of surface Ti centers & geometries, activity slightly different

=PrL 370



=PrL

Helical Chirality of Titanium Centers in Ziegler Natta Catalysts

M
I|V|$TOCI CIMST' e sTioc:l
1 -l |  ( [rERINI I‘ IIIIII o
YNNG AN
Cl Cl /Tl—CI Cl /TI‘C| Cl /
q & & QT":Q O(T"?
------ Ti=aC| ClewTi==C] Cl O
2 "SCICI/I I\T'j—CI/ \nrimc O )
C|";TI C /I y A A
c c c

e edge-connected TiCls octahedra (three pairs of bridged chlorines) give rise to helical chirality
e crystal is overall achiral contains Ti centers with alternating A configuration and A configuration

® sheet edge exposed at 110 crystal surface has Ti centers with all the same chirality (A or A)

® polymerization-active unsaturated and alkylated surface Ti centers have a chiral environment
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Isotactic Polymerization of Propylene Using Ziegler Natta Catalysts

R R

N pro (R) (R)& t
H . %)
3C\ 0 \IIR / H3Q
CI""Ti‘CI > C T|‘C| > C|....Ti‘C| > 4----I
+ polymer switches sides
+ but Ti centers have the
CHj R N " Rz C\H)?R (R)R__ CH3R ; + same chiral configuration
pro- :
| ﬁR //\ L /{()‘ + (180° rotation)
CI TI‘CI > CI" Tf‘CI > ClIIII‘Ti"CI > 4"':

R
R |[R |R
‘" n \IIQ \I:I R |IR |R Q H
0 =L S g (R FON 0 T + ClnTi—=Cl
Clee-Ti—=(] Cliv-Ti==(] 3- (R ~UR) =,

® every insertion step creates a new stereocenter (from planar, achiral monomer)
® Ti centers are racemic mixture of A and A enantiomers, so absolute stereoconfiguration undefined
® subsequent steps always create the same stereoconfiguration, resulting in isotactic polypropylene

=PrL 372



Tacticity Control in Metallocene-Catalyzed Propylene Polymerization

e metallocenes are metal complexes with cyclopentadieny! (Cp) ligands

® metallocenes are homogeneous “single site” polymerization catalysts, defined compounds in solution

C> symmetric, chiral

Cs symmetric, achiral

® most common polymerization catalysts are ansa-zirconocenes, with bridged, bidentate Cp ligands
® coordination geometry around the metal center allows to control in detail the catalyst symmetry
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Isotactic Polypropylene by Stereoselective Polymerization

® stereoselective polymerization starting from chiral, Co-symmetric zirconocene catalyst precursors

guadrant

A
Isomerization “ ’.\ 180° identical
v

free
quadrant

R R |R

= H,CTR™TR], CH,

Isotactic

quadrant

e monomer coordination with double bond towards zirconium, methyl group in free quadrant
® two chain positions each enantiotopic but both identical, result in same stereoconfiguration
® jsomerization possible in resting state but results in same configuration, no stereoerrors

® absolute stereoconfiguration undefined because catalysts typically a racemic mixture
® relative stereoconfiguration fixed, all stereocenters have same configuration, isotactic polymer
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Syndiotactic Polypropylene by Stereoselective Polymerization

® stereoselective polymerization starting from achiral, Cs-symmetric zirconocene catalyst precursors

pro-(R)

free free
quadrant quadrant

C><!/—Pol -

Isomerization “

free free
quadrant guadrant

R R |R

—  H,CTR™1s) 1, ~CH,
syndiotactic

e monomer coordination with double bond towards zirconium, methyl group in free quadrant
® two chain positions each enantiotopic and enantiomeric, result in opposite stereoconfiguration
® jsomerization possible in resting state, results in opposite configuration and thus stereoerrors

® absolute stereoconfiguration undefined because catalysts achiral
® relative stereoconfiguration fixed, stereocenters have alternating configuration, syndiotactic polymer
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Polypropylene versus Polyethylene

50
HDPE 123 J/g
40+
iPP
< £ 30
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| | | | | | | | O | | | |
25 50 75 100 125 150 175 200 0 50 100 150 200 250
temperature / °C strain / %
Material Tm (°C) Ts (°C) crystallinity density (g/mL) tensile strength (MPa)
HDPE 120-135 -100 70-90% 0.94-0.97 20-37
iPP 160-170 -10 30-60% 0.94 25-40

PP offers higher melting temperature, heat resistance, and stiffness, but is less flexible than HDPE
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Applications of PP

“tubes and piping- dtive parts
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Applications of LDPE, HDPE, and PP

® current market states in Europe (derived from Eurostat data and other studies):

EEE

Other applications 5%

Food packaging
Refuse sacks 23%
5%
Other bags/sacks
o LDPE

Household
packaging

Automotive

& P P C&l Packaging
LLDPE S
o (0]
Strech film Other &
18% Q
Agricultural film
by Transport
7% Packaging
480 o
Building and
' Contruction
Filmonr eel Shrink film ] 4
9% 14% Transpgrt Household 85 Agriculture
Packaging Furniture

Products

® LDPE and LLDPE are mostly produced in form of films, used for packaging materials
e HDPE and PP mouldable in any shape, hence more diverse applications with packaging dominating
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Poly(styrene) and Copolymers
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Synthesis of Polystyrene and Copolymers

radical anionic O

general purpose PS (GPPS), expanded PS (EPS) styrene block copolymers (SBCs)
styrene- (S e.g., SBS, SIS, SEBS
-butadiene-styrene ( BS)

| a Q) ()

- coordination cationic
syndiotactic PS (sPS) styrene block copolymers (SBCs)

isotactic PS (iPS) e.g., SIBS

A y

® phenyl substituent can serve as both (mostly) +M and —M substituent
® styrene can be polymerized by radical, cationic, anionic, and coordination polymerization !

U
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Applications of Styrenic Materials

acrylonitrile
electrical construction A
11% 9% '
automotive heat &
4% chemical
Sackaging NBR resistance SAN
(0)
>51% household
appliances ABS
10%
toughness stiffness ,;;
impact strength transparency ‘
butadiene HIPS, SBC styrene

® styrenic materials used in a wide range of applications due to their versatile properties
® sustainability concerns due to acrylonitrile and rubber particle content

=P-L Plastics Europe, 2019; Niessner, Practical Guide to Structures, Properties and Applications of Styrenic Polymers, 2013 381



General Purpose Polystyrene (GPPS) and Expanded Polystyrene (EPS)

General-Purpose Polystyrene (GPPS) Expanded Polystyrene (EPS) Foams
e completely amorphous, Ty =100 °C ® processing from PS pellets with foaming agent
e thermoplastic, softening at T; ® rigid, closed-cell thermoplastic foams
e high stiffness E = 3.6 GPs, but brittle e |ow density p = 10-50 kg/m?
e optically highly transparent ® vulnerable to organic solvents
e food containers, medical syringes, low- e protective packaging, food containers,
impact packaging disposable cups, insulating panels,
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General Purpose Polystyrene (GPPS) and Expanded Polystyrene (EPS)

High-Impact Polystrenes(HIPS) Acrylonitrile-Butadiene-Styrene (ABS)
® blend of rubber particles dispersed in e radical emulsion polymerization, graft
continuous PS matrix copolymer (P/PAN)-g-PB
® |ess brittle but loss of transparency, ® higher chemical, heat resistance, impact
high impact strength strength, slow aging, high quality touch
e food containers, refrigerator linings, e high-performance applications in automative
toys, low-impact appliance housings (dashboards), appliances, toys (LEGO bricks)

Hirayama, Saron, Polymer 2018, 135, 271-278.
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Poly(ethylene terephthalate)



o)

OMe OH
pressure,
0 245 °C
dimethyl terephtalate ethylene glycol
(excess)
O
OH
“‘}@A Ho~OF g
pressure,
O 100-200 °C
terephtalic acid ethylene glycol
(excess)

Synthesis of PET

O

O
HO™ ™

bi

O
s(hydroxyethyl)

terephthalate (BHET)

)\/@)LO/\/O H
@)
HO™

b

O
is(hydroxyethyl)

terephthalate (BHET)

HO ™™

O ™™
/O

O

PET prepolymer

OH

n<100

transesterification
>
vacuum, > 250 °C

transesterification

>
vacuum, > 250 °C

solid-state
polycondensation
>

vacuum, 220-250 °C

HO ™™

HO™™

OH

n<100

OH

n <100

OH

n>150

® PET synthesis via BHET and prepolymer for process efficiency, product quality, and high molar mass

=PrL
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Properties of PET

semicrystalline
PET atr. t.

melt strain
hardening

amorphous
PET @ 90 °C

1.5 700
semicrystalline PET melting
| N\ 600-
T, \F
= 500-
£1.0- | _
= 147
£ processing | 242 % 400+
= @ 90 °C P
= 0 300-
= melting 1z
g% B 200-
Tg cold
crystallization 100-
exo up 4 amorphous PET 2112
O | | | | O
50 100 150 200 250 0

temperature / °C

® PET (T, =67-81°C; T» = 255-260 °C) is a semicrystalline, glassy thermoplastic polymer
® upon rapid cooling, PET forms an amorphous material that shows cold crystallization upon heating

20 40 60
strain / %

80

100

® pronounced melt strain hardening during melt deformation from the amorphous state
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Manufacture of PET Bottles

1. synthesis of PET and extrusion into pellets 2. injection molding of peIIets into preforms | = %

— — i' --"" e 5 -l
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Further Applications of PET







Poly(methyl methacrylate)
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Properties and Applications of Poly(methylmethacrylate) (PMMA)

O 80 °C

poly(methyl methacrylate)
Ts =100°C

® Synthesis
® PMMA is polymerised by radical polymerization

® can be polymerised in bulk, solution, emulsion or suspension

® Properties
® amorphous thermoplastic
e exceptional optical clarity

® higher impact strength than PS

® Applications:
® glass substitute
® gutomotive (motorcycle windshields, panels, fenders

® electronics (tv screens, laptops, smartphones display)
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)
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Polyamides
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® synthesis via

® synthesis via

® synthesis via

O

Synthesis of Polyamides (PA)

but difficult to ensure stoechiometric conditions

2 4 6 NH 1 3 5 »
HOJMOH HN T o1 2 — > 4NN N%\/4\/;N« Nylon 6,6 (PA6,6)

H
O : O I

SONPORPCINL | ORI
H2N 1 3 5 7 9 11°0OH 1 3 5 7 9 11 H Nylon 11 (PA].].)
N
H - -
N« 280°c [Q H
) — NS + Nylon 6 (PA6)
5 N2
4 3 N




Ensuring Stoichiometric Conditions

® self-adjusted perfect stoichiometry for technical preparation of nylons and PET

interfacial polymerization salt dehydration
(Nylon 6,10) for melt polycondensation

Ao~ ~UNH,  1,6-diaminohexane
HoN (hexamethylene diamine)

| O

1,6-hexanedioic acid
J\/\/\H,OH
HO (adipic acid)

O

l H,O/EtOH

Jl\/\/\n/O@ (“AH salt”)

O
© O hexanediammonium
@N @ adipate

l > 270 °C (melt)

H N/\/\/\/NHZ @) H

. A SOONONNT
in H,0/NaOH Jj\/\/\n’N N1 Nylon 6,6

O H
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Properties and Applications of Aliphatic Polyamides

S ) i 5 ﬁ i i q
/Jj\/\/\/\/\/\N" \m/\/\/\/\)l\N/\/\/\/N\ \j]/\/\)LN/\/\/\/N\
- Nn
L 4 X - - X
Nylon 11 Nylon 6,10 Nylon 6,6
Tg = 45°C; Tm = 185°C Tg = 55°C; Tm = 215°C Tg=70"C; Tm = 255°C

® Properties
e partially to highly crystalline thermoplasts or fibers
® high strength, toughness, hardness, low wear
® good electric isolation

e chemically robust against solvents, acids, bases, oxidants

® Applications:
® machine parts (bearings, gears, conveyor belts)

e fibers, brush filaments, hosiery

® electrical components

=PrL



Melting Points of Aliphatic Polyamides and Polyesters

360 -
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® hydrogen bonds are the origin of high melting points of polyamides as well as the odd-even effect
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Properties and Applications of Semiaromatic and Aromatic Polyamides

0

- - - - - O -

O O @\ i
H * ] Q)

\\NwNY@ ’)J\©)LN N AN )—NH|

& H H r
- O °n - °n - O -n

) HAOU ) Nomex Kevolar
Tg=060"C; Tm=275°C Ty = 270°C; T = 360°C (dec.) Tm > 400°C (dec.)

® Properties
® higher melting point and glass transition

e higher strength, chemical, and heat resistance

® Applications:
® aeronautic, aerospatial, military equipment (body-armor)

e safety equipments (cut-resistant gloves)

® sports and leisure goods (tennis rackets, skis)
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Other Plastics



Synthesis of Polycarbonates

® step growth polymerization between bisphenol A and phosgene (toxic, volatile)

phosgene
O — -—
i
SRS - IO 2
HO OH NaOH/H,0  _ Aot
— HCl - X
bisphenol A polycarbonate A

® transesterification of diphenyl carbonate (DPC) with bisphenol A (in bulk)

0, O T poony
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Properties and Applications of Polycarbonates

polycarbonate A
Tg = 150°C

e crystallises very slowly, thus is typically used in its fully amorphous glassy state
® high strength, toughness, hardness, up to 135°C

® highly transparent; good electric isolation, good irradiation stability

® Applications:
® electronic components

® construction materials (domelights, glazing, roofing sheets)

e compact discs, DVDs, blu-rays
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Synthesis of Polyurethanes

<

diisocyanate

BegrEhbeg

® step growth polymerization between a diol and a diisocyanate

® PU foams are synthesised by polyaddition between a polyol and a diisocyanate in the presence of

a blowing agent

Hon;{Ym1
OH

polyol

N
+ O\\C j@/ Cs
N

diisocyanate

H,0O

- CO2

‘0
'\d/“N CH/\\/K:HJLH
urethane urea
linkage linkage
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Properties and Applications of Polyurethanes

N 0 N\n/
Lo

N
H

e chosen polyol molecule has a large influence on the properties and degree of
crosslinking in the polyurethane

e when slightly of cross-linking, elastomer with high extensibility

e when highly cross-linked, hard flexible thermoset

® Applications:
® gutomobile parts (seats, headrests, armrests, roof liners, dashboards)
® insulating foam for construction and furniture

e eclastomers, adhesives, sealants



https://en.wikipedia.org/wiki/Dashboard
https://matmatch.com/learn/material/thermoplastics-vs-thermosetting-polymers
https://matmatch.com/learn/material/thermoplastics-vs-thermosetting-polymers

